Creating a PySpark DataFrame with Timestamp Column for a Given Range of Dates: Two Methods
This article explains two ways one can write a PySpark DataFrame with timestamp column for a given range of time.
A) Plain way
Here are the steps to create a PySpark DataFrame with a timestamp column using the range of dates:
- Import libraries:
from pyspark.sql import SparkSession
from pyspark.sql.functions import expr, to_date, lit
from pyspark.sql.types import TimestampType
2. Start a PySpark session:
spark = SparkSession.builder.appName("CreateDFWithTimestamp").getOrCreate()
3. Define the start and end dates for the time period:
start_date = '2022-11-01'
end_date = '2022-11-30'
4. Create a PySpark DataFrame with the start and end dates:
df = spark.createDataFrame([(start_date, end_date)], ["start_date", "end_date"])
4. Generate a range of dates as a column:
df = df.selectExpr("explode(sequence(to_date(start_date), to_date(end_date))) as date")
5. Convert the dates to timestamps:
df = df.select(expr("cast(date as timestamp)").alias("timestamp"))
6. Show the DataFrame containing the timestamps:
display(df)
All above line:
from pyspark.sql import SparkSession
from pyspark.sql.functions import expr, to_date, lit
from pyspark.sql.types import TimestampType
spark = SparkSession.builder.appName("CreateDFWithTimestamp").getOrCreate()
# Define the start and end dates for the time period
start_date = '2022-11-01'
end_date = '2022-11-30'
# Create a PySpark DataFrame with the start and end dates
df = spark.createDataFrame([(start_date, end_date)], ["start_date", "end_date"])
# Generate a range of dates as a column
df = df.selectExpr("explode(sequence(to_date(start_date), to_date(end_date))) as date")
# Convert the dates to timestamps
df = df.select(expr("cast(date as timestamp)").alias("timestamp"))
# Show the DataFrame
display(df)
B) Using Pandas library
- Import libraries:
from pyspark.sql import SparkSession
from pyspark.sql.types import TimestampType
import pandas as pd
2. Start a PySpark session:
spark = SparkSession.builder.appName("CreateDFWithTimestamp").getOrCreate()
3. Define the start and end dates for the time period:
start_date = '2022-11-01'
end_date = '2022-11-30'
4. Generate a range of dates using pandas:
dates = pd.date_range(start=start_date, end=end_date)
5. Convert the dates to Python datetime objects:
datetimes = [date.to_pydatetime() for date in dates]
6. Create a PySpark DataFrame from the list of datetime objects:
df = spark.createDataFrame(datetimes, TimestampType())
7. Show the DataFrame containing the timestamps:
display(df)
All above line:
from pyspark.sql import SparkSession
from pyspark.sql.types import TimestampType
import pandas as pd
spark = SparkSession.builder.appName("CreateDFWithTimestamp").getOrCreate()
# Define the start and end dates for the time period
start_date = '2022-11-01'
end_date = '2022-11-30'
# Generate a range of dates using pandas
dates = pd.date_range(start=start_date, end=end_date)
# Convert the dates to Python datetime objects
datetimes = [date.to_pydatetime() for date in dates]
# Create a PySpark DataFrame from the list of datetime objects
df = spark.createDataFrame(datetimes, TimestampType())
# Show the DataFrame
df.show()
In conclusion, this article explains two methods of writing a PySpark DataFrame with a timestamp column for a given range of time. The first method uses PySpark functions such as “sequence”, “explode”, and “cast” to create the DataFrame, while the second method uses the Pandas library to generate a range of dates and then convert them to Python datetime objects before creating a PySpark DataFrame. Both methods produce a DataFrame containing timestamps for the specified range of dates.